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A Pair-Specific Osmium Reagent for Polynucleotides 

Sir: 

Osmium(VIII) reagents show kinetic specificity for thymine 
residues among the common bases in polynucleotides.1 An 
osmium(VI) ester is formed by addition to the 5,6 double bond. 
Ligands alter the nature of the reaction of osmium(VIII) 
species with olefins profoundly. The structures,2a the kinetics 
of formation,213 and the hydrolytic stability213 of the products 
are all changed. We have used the effects exerted by ligands 
to design a pair-specific osmium reagent. Scheme I outlines 
our strategy. The ligand, instead of being free in solution, is 
specifically attached to a cytosine residue. This specifically 
localized ligand then affects the kinetics of formation and 
stability of an osmate ester formed at thymine residues in its 
vicinity. Thymine residues not in the vicinity of the ligand 
would be attacked by osmium(VII) reagents very slowly and, 
if formed, would be hydrolyzed rapidly.213 

Table I reports kinetic data for the formation of the osmate 
ester of a modified thymine-cytosine dinucleoside mono­
phosphate3 together with some relevant comparative data. 

The rate law for the reaction of osmium tetroxide with ole­
fins contains two terms, one for the reaction without and one 
for the reaction with ligand:7 rate = (k0 + /c) [L][OsO,)] [S] 
where L is ligand and S is the olefin. When the ligand is at­
tached to the substrate (SL), the rate law contains only one 
term: rate = fcr/[Os04][SL]. The ko and ko' terms can be 
compared directly by their rate constants. Our results show 
that kd is ~1600 times larger than ko- This shows that, in the 
absence of added external ligand, a polynucleotide so modified 
could probably be labeled with an osmium atom with excellent 
selectivity at those thymine residues adjacent to modified cy­
tosine residues. 
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Table I. Rate Data" 

/c0, M"1 Ic, M-2 1010rate, rel 
substrate ligand min-1 min-1 M min-1 rate 

thymine 0.25* 22.5 1 
thymine TMEN^ 0.25* 6400 ± 700rf 40 1.8 
thymine I 0.25* 10 000 ±800* 49.5 2.2 
dTpdC I 0.25* 10 700 ±800/ 53 2.4 
II 386 ±24? 36 000 1600 

" General conditions: 25 0C, 0.1 M sodium phosphate buffer, pH 7. Rates were calculated for'[L] = [S] = 3 X 10-5 M; [OsO4] = 3 X 10~4 

M using the rate laws given in the text. All values are the average of at least three determinations. Infinity values were checked after 10 half-lives. 
Log plots were linear for at least 3 half-lives. * Extrapolated from the value at 8 0C (Ragazzo and Behrman7) using £ a = 9.5 kcal mol-1 

(Subbaraman et al.2b). c iV,./V,yV',./V'-Tetramethylethylenediamine. d Measured by the increase in absorbance at 360 nm under pseudo-first-order 
conditions: [OsO4] = 4 X 10-4; [thymine] = 5X lO"3; [TMEN] =0.5-1.0 X lO""2 M. e Measured as in footnote d but with [I] = 1.1 X lO"2 

M. f Measured by the decrease in absorption at 270 nm under pseudo-first-order conditions: [dTpdC] = 3 X 1O-5; [OsO4] = 3.2 X 1O-4; [I] 
= 4.85 X 10~2 M. s Measured as in footnote/: [II] = 3 X 10~5; [OsO4] = 3.1 X lO"4 M. 

It is also interesting to make a comparison of the rate of 
reaction of this system with the rate in the presence of free 
added ligand. Since these rate laws are of different forms, we 
must compare rates under specified conditions rather than rate 
constants. This is also shown in Table I. One can calculate that 
the concentration of free added ligand necessary to bring the 
rate of reaction in the presence of free added ligand up to the 
rate in the modified case is 0.04 M. That is, the ligand in the 
modified case is at a kinetically effective concentration 1300 
times that in the free case. 

We are extending this work to examine the effects of chain 
length in the attached ligand and also to the design of a reagent 
specific for triplets.8 
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